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A new upwind scheme has been developed and analyzed for a finite-
volume solution of the conservation laws on triangular meshes. The
scheme is an upwind second-order extrapolation with simple local
limiters, and it is weakly second-order accurate and satisfies maximum
principles. In one dimension, the scheme reduces to a fully upwind
second-order scheme with 3 simple local limiter, Preliminary numerical
results demaonstrating the performance of the scheme on a variety of
initial-boundary value problems are presented. The order of con-
vergence of the scheme is found to vary from 1.6 to 1.9in L',  © 1993
Academi¢ Piess, inc.

1. INTRODUCTION

The new numerical scheme is developed to compute the
physically relevant solution of the initial-boundary value
problem associated with the hyperbolic conservation law

dgu af dg ,

o 6x+6y_0 in Qx(0,7) (l.1a)
ulx, ¥, 0)=wy(x, ) mn (1.1b)
wix, y t)y=rix, y,1) on #Qx(0,7), (lic)

where 2 < R%, u=(uy, .., u,,)', and (f, g) is a flux such that
any real combination of the Jacobian matrices n,(df/0u) +
ny(dgfdn) has m real cigenvalues and a complete set of
cigenvectors.

Theorics about numerical methods solving (1.1) are far
less advanced for the two-dimensional case than for the one-
dimensional case. Recently, Cockburn er al. [4] proposed a
finite-element method, RKDG, which satisfies a maximum
principle for two-dimension scalar conservational laws.
However, they used a stronger local limiter to enforce the
maximum principle. In this paper, some simple local
limiters are constructed to enforce the present {inite-volume
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scheme to satisfy a maximum principle, thus the scheme can
easily preserve high-order accuracy subject to the local
limiters. The scheme devetoped stores the flow variables at
the barycenters of the triangles. Fluid fluxes are integrated
along the cdges of the triangle containing the barycenter
using the mid-point rule. Flow solutions are computed
using TVD Runge-Kulita time integration {3,10]. An
upwind second-order extrapolation is used to evaluate the
flow variables at the edges. It is interesting that the scheme
reduces to a fully upwind second-order scheme with a
simple local limiter in one dimension.

The objective of the present paper is to introduce and
analyze a weakly second-order, upwind, finite-volume
scheme. In Section 2 we present and analyze our scheme
for solving scalar conservational laws. We introduce the
upwind second-order extrapolation and the local limiters
which do not degrade the scheme accuracy while enforcing
a maximum principle. In Section 3, the present scheme is
gxtended to solve the Euler equations. Some local limiters
are introduced, based on conservative, primitive, and
characteristic fields. Section 4 presents several numerical
results. The numerical results of Tables I-IV indicate
that the method is about [.6~ 1.9 order accurate in L'
According to the paper [6], such a scheme is called weakly
second-order accurate. Finally, concluding remarks are
presented in Section 5.

2. GENERAL FORMULATION

2.1, Semi-discretization Formulation

The conservative, integral form of Eq. (1.1a}is

%Hnudﬂi(ﬁg).ndt:o, (2.1)

where ( is the domain, I is the boundary of €2, and n is the
outer unit normal. We assume the two-dimensional domain
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£2 can be discretized into a group of triangular polygons, T,.
The vertices, barycenters, and edges of the triangles K, are
denoted by ¥, C;, and e, =1, 2, 3, respectively.

In each triangle K, flow variables are stored at the
barycenter C, and flow conservation is enforced on the
boundary 4K;. If we assume that the triangular mesh is
geometrically time invariant and the flow variables stored at
the barycenter C, are an area average of the integrated flow
variables in the triangle K, then Eq. (2.1) can be written as

AK)Zi=~§ () 22)

where A{K) is the area of K.
To evaluate the right side of (2.2), we sum all the flux
vectors on the three edges of X;:

§ (hg)ndi= Fyle,,

i=1

(2.3)

where F, is the numerical approximation for the flux
associated with the edge ¢, and |, | is the length of the edge
e; (see Fig. 1).

In order to evaluate F; using an upwind scheme, it is
necessary to have two fluid dynamic states, u, ; and u; »
(see Fig. 1). Let point M; be the midpoint of the edge e,;.
Given two variables u;, and u, ., we can define the flux
function &, (u, ,, u, ) such that &;(-, -) is any function by
verifying the conditions

(1) Ayl w)=(fi8) 0y huli u) = (£ 8)-m; (2:40)
(2)  hy{u, v)is nondecreasing in # and

nonincreasing in o, (2.4b)
(3) Ay(-,)is Lipschitz, (2.4¢)
(@) byl ug)= =y, uy), (24d)

where n;; is the outer unit normal of the edge and e; corre-

FIG. L
and u; z.

Representative variables of two fluid dynamics states w; .,
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sponding to the triangle K, such that n;= —n;,. Examples of
h can be found in [3, 57. In this way, Eq. (2.2) become

du, 2
AK)ZE = =Y hyfuy . ugs) leyl  foralli
dr

i=1

(2.5)

Now, we introduce a second order extrapolation to evaluate
the left and right Riemann states for the upwind solver.
Referring to Fig. 2, we use the three variables ug, u;, u,
corresponding to barycenters Cy, C,, C, to extrapolate
the left variables u,, ;. Since the values of three points
determine a linear function in a two-dimensional space, the
linear function is given by

u""(uz_uo) /12+(u3_u0) /13+u0, (2.6}

where 4, is the barycentric coordinates such that 4,(Cy) =
6jk! js k = 05 23 3
Therefore, the variable uy, ; is expressed by
Uy, =y — 1o} Ao{M ) + (3 —tig) A3(M ) +uy. (2.7)
Similarly, we can evaluate the right Riemann state u, 4.

The signs of A;{M ) are nonpositive for most of triangula-
tions. '

2.2, The Maximum Principle, the Local Limiter and TVD
Triangulations

From Section 2.1, we can see¢ that the scheme can be
expressed in the form

du, 2

= eyl — u;),

(2.8)

\

Cs, U3

FIG. 2. Representative variable u,, , at point M,.
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where u; are the variables of barycenters c; of the triangle
K, with K;n K; = ¢ ;. Then we require all the coefficients to
be nonnegative [7]:
c; 20, j=123. (2.9)

This condition on the signs of the coeflicients, which is a
direct generalization of the condition for a one-dimensional
three-point scheme to be TVD, assures that a maximum
cannot increase. The rest of this section is to introduce the
local limiters that are enforced to satisfy condition (2.9).
The idea of the following analysis is similar to sections 2.3
and 2.4 in Ref. [4].

From the definition of the flux &, we have

for al i, (2.1

3
Z hrj(uu ;) - |€y| =0

i=1

Rewrite the right-hand side of {2.5} as

3

- Z ity o g ) - leg]

i=1

3
=— z [hy'(“g,u ur}‘,R) —hg(”ss u)]- Leiji

j=1

3
= _Z {Iug, Lo uy m) — (s, u5,2)7 - legl

J=1

+ [hr'j(uh uij‘R] “hfj(uia u;)] - |eij|}
3

= Z ‘|eij| hyq (U — )

=1

3
+ Z —|efj| 'hU.z'(uﬁ.R_ui)
i=1

3
= Z “|€fj| 'hij,l '(uij,l__ui)

i=1
3
+ Z _leijl 'hij,2'[(ug,R_u{f)+(uU—ui)]’ (2.11)

i=1

where A, | is the u-derivative of &; evaluated at some points
and h;; , is the v-derivative of 4; evaluated at some points.
From (2.4b) we have /,, 20 and h,, <0. Now, we first
study the first term in RHS of Eq. (2.11). For fixed j= |, we
have

—lewl Ay - (i, L — 1)
= —ley |- hy [ — 1)) An(M))
+ (i — 1) Lis(M )]
—leal-hai-An(My) - (42 —u)—leq|

i Ai(My) (s —w). (2.12)
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Then the first condition to achieve the maximum principle
is

Ag(My) <0, k=123, j#k foralli (2.13)

For the second term in RHS of Eq. (2.11), by following the
theorem in [8], we need to require that

T
OISM\(\]

U, —uy

(2.14)

From Eq. (2.13), we have to restrict ourselves to consider a
special class of triangulation T,

DEFINITION 2.1. A triangulation T, is said to be TVD-
triangulation, if for each triangle X, the condition (2.13) is
satisfied.

From the condition (2.14), we define the local limiter
Plas
if

PI:R>R (2.15a)

such that

uiy = P;f(uéf,[,)

— minmod(u;, , —;, k- (uy—u;)) +u;,  (2.15b)

where k is some positive constant such that k> 0.5, and
minmod is the function:

min(|al, |b|) -sign a
0 otherwise.

minmod(a, b) = { if sign a =sign b

Now, by applying the local limiter (2.15), Egq.(2.11)
becomes

3
— ¥ ke, uln) eyl
i=1

3
= Z —legl ‘hy.l(uf},e},v_“i)

i=1
+ _il —ley] - hy LGy —uy) + (uy— 1)) (2.16a)
where "
upy —u=c-(uy p—u)
=c-[u—u)-A-(My)
(3 —u;}- Az - (M) ]. (2.16b)

By Eq.(2.15b), we have that 0<c< 1. Therefore, com-
bining Definition 2.1 and the local limiter P}, we have
proven the following result:
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THEOREM 2.2. Let P be the limiter defined by (2.15) and

let T, be TVD-triangulation, then the scheme (2.8) satisfies
the maximum principle, i.e., the coefficients C,’s of Eq. (2.8)
satisfy Eq. (2.9).

Remark 2.3. For some TVD triangulations, the scheme
with the limiter P}, will lose second-order accuracy. Here, we
introduce two other limiters. First, from the second term in
the RHS of Eq. (2.11), if the quantity u; , — u; can be writ-
ten as a positive linear combination of u,, ~u,, k=1, 2, 3,
the scheme (2.5) still satisfies the maximum principle.
Obscrving Fig. 3, the vector C,M, can be expressed as a
positive linear combination of vectors C,C;, and C;C,,, as

CfMl = BICJ‘CH + 82CiC52a

where 8,, 6, = 0. Define

Un=8 (g —u}+ 60, (u—u)

and the second limiter P? as
PL:R-R,
such that

wii = P?l(uil.L) =minmod(x,, , —t;, k" - U, )+ u,, (2.17)

where &’ 2 1. One can see that this local limiter will preserve
second-order accuracy for smooth solutions.

Second, we modify the idea of Barth’s limiter [1] and
define

max min

W =max(u;, u;y, Ui, ui3),  w" =minlug, w1, 4)
and, if u;; , —u, >0, then
new — p3
uirp =Prua L)

=minmod (e;, ; —u;, k- (4" —uw,)+ M -")+u;

FIG. 3. Vector C;M, can be expressed as positive linear combination
of vectors C,C;, and C,C,,.
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ifu, , —u;=0, then

new _ p3 _ .
wiip = Pu  =u;

if #;) ; —u; <0, then

Uy = P?1(“i1,z.)
=minmod{(u;y , —u;, k- (W™ —u)—M-h) +u,,
(2.18)

where £2 0.5, M 20, and A is the smallest length of edges.
This limiter is the weakest one which can preserve order
accuracy, but it may not satisfy the maximum principle even
for M = 0. The choice of M is state of the art; one can refer
to [3,4].

Remarkc 2.4. We note that the scheme with the local
limiters P}, and P% reduces to the following fully upwind
second-order scheme with a simple local limiter in one
dimension:

—_ 1 —
Wy r=We1— 3 (M 0=ty y)

(2.19)

1
Ui o=+ 3 (4;—u;_y).

Here, let u, be the numerical approximation at x = j 4x and
the iocal limiter is defined by

ne

“j+w1,f2,1_ = miand(“j+ 1/2.L " Uj k- (41— u)) + 1;
(2.20)

2.3. TVD Runge—Kutta Time Integration

A second-order TVD Runge-Kutta time integration
scheme [3,10] was used to integrate the ODE (2.5).
Runge—Kutta time integration is an explicit scheme which is
easy to evaluate and simple to implement.

Define a residual as

Ri(uy=—e ¥ hyluy . u,8)- eyl foralli (2.21)

The second-order TVD Runge-Kutta time stepping scheme
is then:

0
uy ' =u;}

1 0 0
u! =u® + Ar R, (u'”)
uP=ul 4 At R,(u")

W' =0.5(u® 4+ 4.

(2.22)
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Define
_ le| .,
CFL= sup Ar— A 7.1l popa.s0] (2.23a)
cedK, Ke Ty |K|
ag=inf{ inf wo(x,y), inf r(x,y 1)} (2.23b)
(x.y)ef2 (x, y)e sl
bo=sup{ sup wuo(x,y), sup r(x,» 1)} (2.23¢)
(%, 7.42) (x.y)e o

It is not difficult to see that the fully discretized scheme
(2.22) with CFL<1/(6+3k) satisfies the maximum
principle.

3. EULER EQUATIONS

3.1. Governing Equation

The flows of two-dimensional, compressible, inviscid
ltuid, can be described in conservation form by the Euler
equations,

w,+f+g,=0, (3.1)
where
P pu pv
2
u u +p uv
w={ ), r={ * , 8= ‘2

pr puv pv-+p
pe u(pe+ p) v(pe + p)

here p, p, (. v), and pe are the pressure, density, the
Cartesian velocity components, and the total energy per
unit volume, respectively.

The system of equations is closed by the equation of state
for a perfect gas,

p=(y—1)(pe—3p(u* +v)),

where y is the ratio of specific heats and typically taken as
1.4 for air.

3.2. Local Limiter

The extension of the method to solve Euler equations
is straightforward except for the choice of local limiters.
Usually, one can choose a conservative, primitive, or
characteristic field as a basis to define a local limiter, since
a local limit defined by conservative or primitive fields is

easily constructed. Here, we only introduce the charac--

teristic-field limiter.
Let

J

; (3.2)

*

i

af dg
(5; nij,x+5; n,;,-'y)

W=w
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which is the jacobian matrix. Here (n; ., n; ,)=n; and w*
is equal to w; or (w,+ w,). Denote the eigenvalues, the

left and right cigenvectors of J; by 4%, I{#’, and ri,

p=1, ..., 4 Normalize the left and right eigenvectors as

) —
lﬁ'f ) rg'” - apq

and project every vector to the eigenspace J;;,

aP =1 xa,

where g is w,; ; —w; or W, —w,.

Apply the local limiter, P}j, to each characteristic field

(W,-j, L— wl_)[plfmod)

=minmod({w; , — w,)'"", k- (w;—w;)'").

Finally, transform (w,; ; — w,})'#"™°% back by means of the
relation

4
(wij‘L - Wf)(mod] = Z (w‘.j‘l_ _ wf)(P)(mod)-
p=1

Therefore, we obtain
(3.3)

Although it is more complicated to compute, it has more
physical senses for the Euler equations [3, 9].

new __ {mod)
witr =Wy —w,) + W,

4. EXAMPLES FOR NUMERICAL RESULTS

4.1. Scalar Conservational Laws

In this subsection, three examples are used to test the
ability of capturing discontinuity and the order of accuracy

FIG. 4. The triangulation: 20 x 20 x 2 triangles.
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0.80

0.56 +

0.32 -

0.08

-0.16-

~0.40 T T T T
=10 =08 Q2 Q.2 Qe 14

FIG. 5. Examples 3.1 with Lax-Friedrichs flux, T=0.I, CFL =04,
32 x 32 x 2 triangles. The solution cut along the diagonal.

of our scheme. We use Lax-Friedrichs monotone and
Godunov flux to compute the flux, A;, and compare the
differences between them. The grid system whose element
numbers are M x N x 2 is shown in Fig. 4. [t is easy to check
that this triangulation is TVD-triangulation. The local
limiter, P}j, is used in those tests. On the used triangula-
tions, the projection still preserve the potential second-
order accuracy of the method and the two local limiters P},
and Pf,., are equal to each other. Note that the L™-error is
evaluated at the barycenter and the L'-error is obtained by
multiplying that value by the area of the triangle.

ExaMPLE 1. In this problem, we consider the Burgers
equation with periodic boundary conditions,

U

uz 2
u,+(?> +(7) =0, in (0,7)x2 (41a)

1 1,
u(t=0,x,y) =Z+§ sin{nm(x + y)), (x, y)eQ,

(4.1b)

where the domain @ is the square (—1, 1} x (—1, 1),
At T=0.1 the solution is smooth. Figure 5 shows the
curve cut along the diagonal computed by means of the

TABLE I
Smooth Solution for T=0.1 with Lax-Friedrichs Flux

M L, error Order L, error Order
8 4.331E—-02 JI155E—-02

16 1.340E — 02 1.63 TA33E—-02 1.48

32 4.138E —03 1.76 4.263E—03 141

64 1.238E — 03 1.74 1973E—-03 111
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TABLE H
Smooth Solution for T=0.1 with Godunov Flux
M L, error Order L, error Order
8 4.495E —02 3395E-02

16 1.410E — 02 1.67 L133E-02 1.58
4.161E —03 1.76 4.262E - 03 1.41

64 1.234E —03 1.75% 1.981E—-04 1.21

Lax—Friedrichs flux. The L!, L.* errors and the orders of
accuracy of the solution are displayed on Tables I and II
for the schemes with Lax-Friedrichs and Godunov flux,
respectively.

At T=0.5, solution presents a discontinuous curve (see
Fig. 6), which is cut along the diagonal, computing by
means of the Lax—Friedrichs flux. We can see how the dis-
continuity has been captured by one cell. Similarily, L}, L=
errors and orders are displayed in Tables III and IV for the
two fluxes. When the selution is smooth, the performances
of Lax—Friedrichs and Godunov fluxes are almost equal.

ExaMPLE 2. We consider the initial-boundary value
problem of the Burgers equation:

u? 2
u+ (?) 4 (?) —0, in (0,T)x%, {(42a)
—-0.2, for x>0,y>0
f20 )= —1.0, for x<0,y>0
ur=0, x5 y)= 0.5, for x<0,y<0,({x,y)eQ
0.8, for x>0,p<0,
(4.2b)
u(t, x, y)=v{1, x, y}, (x,y)edQ, {4.2¢)
0.80
0.56
0.32J
0.08
0,16
~0.40 T T 1 1
-10 -06 0.2 02 06 10

FIG. 6. Example 3.1 with Lax—Friedrichs flux, T=05, CFL=04,
32 x 32 x 2 triangles. The solution cut along the diagonal.
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TABLE II1

Discontinuity Solution for 7=0.5 and Lax—Friedrichs Flux

M L, error Order L error Order
8 1.426E — 03 7.548E — 03
16 6.436E — 04 i.15 2.531E—03 1.58
32 L837TE—-04 1.81 1477E —03 0.78
64 S212E—05 1.82 6.391E - 04 121
Note. Computing domain: [ —0.25,0.5] x [ —-.25x0.5].

where v is the exact solution of problem (4.2) and @ is the
square [—1,1]x[—1,1]. In Figs. 7 and 9, we show the
level curves of the approximate solution and curve cut along
y=—g at T=10 with Lax—Friedrichs flux. Similarily,
Figs. 8 and 10 show the contour and curve by means of
Godunov flux. In this example, the grid system is con-
structed by 64 x 64 x 2 triangle meshes. From Figs. 9 and
10, we can see that Godunov method presents siightly better

solutions than Lax—Friedrichs does.

ExaMPLE 3. The last problem we consider is a two-
dimensional boundary layer problem:

2
m+(%)'+%=a 0<x<l, 0<y<1 (43a)

u(x, 0, ty=a+ b sin(2nx), (4.3b)

u is periodic in x with period 1. (4.3¢)

The initial condition is wu(x, y, 0)=a+ bsin(2nx).
Enforce (4.3b) at 3y = 0 and solve the problem to steady state
with the criterion |u"*' —u"|| 1< 10~7. Figures 11 and 12
show the contoursfora=0.5,b=1,and a=0, b = 1, respec-
tively. Lax—Friedrichs flux with 32x%32x2 triangular
meshes is used in this example. One point we need to men-
tion is that, in Fig. 12, the second case, a=0 and b=1,
shows a more smearing solution at the right-hand side of the
shock. We suspect that this phenomenon was produced by
the grid orientation around the shock. In the next section,
one can scec the effect of grid orientations for the Euler
equations.

TABLE IV

Discontinuity Solution for 7=0.5 with Godunov Flux

M L, error Order L, error Order

8 1.505E — 03 7.968E — 03

16 6.596E — 04 1.20 2531E-0Q3 1.65

32 1.861E — 04 1.83 1.631E—-03 0.63

64 S5297E—05 1.81 T179E —04 1.18
Note. Computing domain: [ —0.25, 0.5] x [—0.25,0.5].
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=4

-0.2

-06

=10

10 -06 02 02 06 10

FIG. 7. Example 32 with Lax-Friedrichs flux, T=10, CFL=04,
64 x 64 x 2 triangles. The level curves.

4.2. Example for Euler Equations

In this subsection, two examples are tested for the Euier
equations. In Example 4, we will study three subjects: grid
orientations, the vector fields for the basis of local limiters,
and the choice of k in Eq. (2.15b). In Example 5, we will
study the local limiter, P}, in detail.

ExamPLE 4. The oblique shock reflection [11]. We
solve a steady flow problem that is an oblique shock wave
impinging to a solid surface with an incident shock wave
angle of 29.88° and inflow Mach number 2.9. The computa-

1.0

-0.2

-06

02 0.2 06 10
T=10, CFL=04,

=)
Lo -06

FIG. 8. Example 3.2 with Godunov flux,
64 x 64 x 2 triangles. The level curves.
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09

=11
-10

T T o
-02 02 06 10

i
-06
F1G. 9. Example 3.2 with Lax—Friedrichs flux. The solutions cut along
i
Y= g-

tional domain €2 is (0, 4) x (0, 1). First, choose k= ! and the
grid system to be 80 x 20 x 4. We test our scheme with four
different vector fields: the conservative, primitive, and two
characteristic fields for the basis of local limiters. We call the
scheme with characteristic-field limiter and w* = J(w; + w))
in Eq.(3.2) as characteristic 1, and the scheme with a
characteristic-field limit and w* =w, as characteristic 1I.
From Fig. 13, the numerical results indicate that the perfor-
mance of characteristics I and Il are better and almost
equally better. Second, we study the method, characteristic
I, with a grid system of 80 x 20 x 4 and different ks, £ = 1.0,
(.95, 0.9, and 0.8. In a theoretical point of view [7], if k is

6.9

0.5

0.1

~{1.3
~0.7
=11 T T = -7
-1.0 -06 0.2 0.2 06 1.0

FIG. 10. Example 3.2 with Godunov flux, The solution cut along y =&,

33

2
=

04

0.0

FIG. 11. Example 3.3 with a =0.5, =10 with Lax-Friedrichs flux,
32 % 32 % 2 triangles. The level curves.

larger than 0.5, the method with local limiters preserves
second-order accuracy for a uniform grid system. From
Figs. 14a and 14b, one can see that their performance is
almost equally better. However, the convergence history, as
shown in Fig. 15, indicates that a scheme with smaller & can
achieve a better convergence rate. It is surprising that a
scheme with the conservation-field limiter and & =0.8 can
also achieve a higher order accuracy and a free-oscillation
solution as the schemes characteristics I and II do. This
indicates that our scheme can perform very well without
using any characteristic-field decompositions. Finally, we

<

08

06

FIG. 12. Example 33 with a=0, =10 with Lax—Friedrichs flux,
32 x 32 x 2 triangles. The level curves.
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2.0
a . .
Wémwmwm
-4
4.0 -
I
® 3.0 1
|
3
8 oy
g [
2.04
Z exact sal. at wall
& sol. with cons.—field limiter
L0~ o J + sol. with prim.—field Iimiter
’ x sol. with char.~field [ limiter
¢ sol. with char.—field II limiter
0.0- - - - - ‘ ; -
0.0 0.5 1.0 L5 2.0 2.5 3.0 3.5 4.0
3.0
b R AR A
&
4.0+ 1
=
3.0
e
3 £
®
] M
o
=}

J exact sol. at 7 = 4.525

N & sol. with cons.~field limiter
PR P CT—— + sol. with prim.~field limiter
x sol. with char.-field [ limiter
¢ sgol. with char.—~field II limiter
0.0- . . - T : ] ;
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

FIG. 13, (a) Pressure distribution at wall. (b) Pressure distribution at y =0.525 for the oblique shock reftection problem.
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TABLE VY
Errors and Order Accuracy of Density for Ringleb’s Problem

MxNx4d L, error Order L, error Order
§x2x4 8222FE -~ 03 4.093E — 02
16x4x4 1.706E — 03 2.27 1.305E - 02 1.65
24x6x4 7.200E — 04 213 6.513E—03 L7t
32x8x4 1.8B4E — 04 4.66 2475E—-03 336
Note. Using the scheme with no limiter.

study the method, characteristic I with &£ =1 and four dif-
ferent grid systems, 80 x20x4, 80 x20x2r, 80 x20x 2],
40 x 20 x 4 (see Fig. 16). On the grid system 80 x 20 x 2r,
from Figs. 17a and 17b, the scheme can capture the incident
shock much better than the reflected one. On the other
hand, on the grid system 80 x 20 x 2/, the effect is changed.
The overall conclusion is that the performance of the
scheme is very sensitive to the grid orientation, when tri-
angles are aligned with the shock, the scheme can perform
well on a coarse grid.

ExampLE 5. The Ringleb’s problem [2]. For the
Ringleb’s problem, there exists a smooth exact solution
which is supersonic at inflow and subsonic at outflow. The
grid system used is 32 x 8 x4, as shown in Fig. 18. From
Fig. 19a, near the turning point O, the gradient of the solu-
tion is very large. We test the schemes by the local limiter,
P}, with conservation-field bases and M =0, 10, and co.
The last one is equal to the scheme with no limiter which 1s
a pure upwind scheme. From TablesV and VI and
Figs. 19b, 19¢, one can see that the last two schemes preform
very well. Comparing Tables VI and VII, much improve-
ment is gained for M = 10. From our experience, this exam-
ple is a good test problem to sec the difference between TVD
and TVB schemes for the two-dimensional Euler equations.

5. CONCLUSION

A numerical scheme has been developed and analyzed for
the finite-volume solution of two-dimensional conservation
faws on triangular meshes. The scheme satisfies the maxi-
mum principle for general nonlinear fluxes il the triangula-
tions are TVD triangulations. We have investigated and

TABLE VI

Errors and Order Accuracy of Density for Ringleb’s Problem

MxNx4 L, error Order L, error Order
§x2x4 B221E—03 4,093E — (2

16x4x4 1.705E — 03 227 L.305E —02 1.65
24x6x4 7.192E - 04 2.13 6.513E —03 1.71
N2x8x4 1.880E — 04 4.66 2474E—-03 337

Note, Using the scheme with P limiter and M = 10.
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FIG. 17. {a) Pressure distribution at wall. (b) Pressure distribution at y =0.525 for the oblique shock reflection problem.
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TABLE VII

Errors and Order Accuracy of Density for Ringleb's Problem

MxNx4 L, error Order L, error Order
8x2x4 3.120E —-02 1L611E -1

16 x4 x4 6.627E — 02 224 3.794E — 02 209

24x6x4 3.736E - 03 1.41 2732E-02 0.81

32x8x4 1122E - 03 4.18 6.930E — 03 4.1

Nore. Using the scheme with P} limiter and M =0,

FIG. 18. The grid system 32 x 8 x 4 triangles for Ringleb’s problem.
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FIG. 19. The density contours for Ringleb’s problem: (a) exact solution; (b) numerical solution by the scheme with no limiter; (¢) with P} limiter
and M = 10; (d) with P} limiter and M =0.
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compared two kinds of flux, L.ax—Friedrichs and Godunov
fluxes. The scheme with the Godunov flux is slightly better
than that with the Lax-Friedrichs flux, but the scheme
with the Lax—Friedrich flux seems to be accurate enough.
A scheme based on TVB can dramatically improve the
order of accuracy as shown in Example 5. Mesh adaptation
remains to be implemented, but promises to greatly increase
the power of the method as indicated in Example 4. Some
smoothing methods and the treatment of boundary condi-
tions to improve the convergence rate are the future works.
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